Cisco® Designing Cisco® Data Center Infrastructure v7.0 (DCID)

The Designing Cisco Data Center Infrastructure (DCID) v7.0 course helps you master design and deployment options focused on Cisco® data center solutions and technologies across network, compute, virtualization, storage area networks, automation, and security. You will learn design practices for the Cisco Unified Computing System™ (Cisco UCS®) solution based on Cisco UCS B-Series and C-Series servers, Cisco UCS Manager, and Cisco Unified Fabric. You will also gain design experience with network management technologies including Cisco UCS Manager, Cisco Data Center Network Manager (DCNM), and Cisco UCS Director.

This course helps you prepare to take the exam, Designing Cisco Data Center Infrastructure (300-610 DCID).

Cisco® Designing Cisco® Data Center Infrastructure v7.0 (DCID)

Skip to Available Dates

Learning Objectives

After taking this course, you should be able to:

  • Describe the Layer 2 and Layer 3 forwarding options and protocols used in a data center
  • Describe the rack design options, traffic patterns, and data center switching layer access, aggregation, and core
  • Describe the Cisco Overlay Transport Virtualization (OTV) technology that is used to interconnect data centers
  • Describe Locator/ID separation protocol
  • Design a solution that uses Virtual Extensible LAN (VXLAN) for traffic forwarding
  • Describe hardware redundancy options; how to virtualize the network, compute, and storage functions; and virtual networking in the data center
  • Describe solutions that use fabric extenders and compare Cisco Adapter Fabric Extender (FEX) with single root input/output virtualization (SR-IOV)
  • Describe security threats and solutions in the data center
  • Describe advanced data center security technologies and best practices
  • Describe device management and orchestration in the data center
  • Describe the storage options for compute function and different Redundant Array of Independent Disks (RAID) levels from a high-availability and performance perspective
  • Describe Fibre Channel concepts, topologies, architecture, and industry terms
  • Describe Fibre Channel over Ethernet (FCoE)
  • Describe security options in the storage network
  • Describe management and automation options for storage networking infrastructure
  • Describe Cisco UCS servers and use cases for various Cisco UCS platforms
  • Explain the connectivity options for fabric interconnects for southbound and northbound connections
  • Describe the hyperconverged solution and integrated systems
  • Describe the systemwide parameters for setting up a Cisco UCS domain
  • Describe role-based access control (RBAC) and integration with directory servers to control access rights on Cisco UCS Manager
  • Describe the pools that may be used in service profiles or service profile templates on Cisco UCS Manager
  • Describe the different policies in the service profile
  • Describe the Ethernet and Fibre Channel interface policies and additional network technologies
  • Describe the advantages of templates and the difference between initial and updated templates
  • Describe data center automation tools

     

    Course Details

    Course Outline

    1 - Data Center Network Connectivity Design
  • Describing High Availability on Layer 2
  • Designing Layer 3 Connectivity
  • Designing Data Center Topologies
  • Designing Data Center Interconnects with Cisco OTV
  • Designing a LISP Solutio
  • 1 - Describing High Availability on Layer 2
  • Overview of Layer 2 High-Availability Mechanisms
  • Virtual Port Channels
  • Cisco Fabric Path
  • Virtual Port Channel+
  • 2 - Data Center Infrastructure Design
  • Describing Hardware and Device Virtualization Describing FEX Options
  • Describing Virtual Networking
  • Describing Basic Data Center Security Describing Advanced Data Center Security
  • Describing Virtual Appliances
  • Describing Management and Orchestration
  • 2 - Designing Layer 3 Connectivity
  • First Hop Redundancy Protocols
  • Improve Routing Protocol Performance and Security
  • Enhance Layer 3 Scalability and Robustness
  • 3 - Data Center Storage Network Design
  • Describing Storage and RAID Options
  • Describing Fibre Channel Concepts
  • Describing Fibre Channel Topologies Describing FCoE
  • Describing Storage Security
  • Describing SAN Management and Orchestration
  • 3 - Designing Data Center Topologies
  • Data Center Traffic Flows
  • Cabling Challenges
  • Access Layer
  • Aggregation Layer
  • Core Layer
  • Spine-and-Leaf Topology
  • Redundancy Options
  • 4 - Data Center Compute Connectivity Design
  • Describing Cisco UCS Servers and Use Cases
  • Describing Fabric Interconnect Connectivity
  • Describing Hyperconverged and Integrated Systems
  • Describing Management Systems
  • Describing Hadoop, SAP Hana, and IoT on Cisco UCS
  • 4 - Designing Data Center Interconnects with Cisco OTV
  • Cisco OTV Overview
  • Cisco OTV Control and Data Planes
  • Failure Isolation
  • Cisco OTV Features
  • Optimize Cisco OTV
  • Evaluate Cisco OTV
  • 5 - Data Center Compute Resource Parameters Design
  • Describing Cisco UCS Manager System-Wide Parameters
  • Describing Cisco UCS RBAC
  • Describing Pools for Service Profiles
  • Describing Policies for Service Profiles
  • Describing Network-Specific Adapters and Policies
  • Describing Templates in Cisco UCS Manager
  • 5 - Describing Locator/ID Separation Protocol
  • Locator/ID Separation Protocol
  • Location Identifier Separation Protocol (LISP) Virtual Machine (VM) Mobility
  • LISP Extended Subnet Mode (ESM) Multihop Mobility
  • LISP VPN Virtualization
  • 6 - Describing VXLAN Overlay Networks
  • Describe VXLAN Benefits over VLAN
  • Layer 2 and Layer 3 VXLAN Overlay
  • Multiprotocol Border Gateway Protocol (MP-BGP) Ethernet VPN (EVPN) Control Plane Overview
  • VXLAN Data Plane
  • 7 - Describing Hardware and Device Virtualization
  • Hardware-Based High Availability
  • Device Virtualization
  • Cisco UCS Hardware Virtualization
  • Server Virtualization
  • SAN Virtualization
  • N-Port ID Virtualization
  • 8 - Describing Cisco FEX Options
  • Cisco Adapter FEX
  • Access Layer with Cisco FEX
  • Cisco FEX Topologies
  • Virtualization-Aware Networking
  • Single Root I/O Virtualization
  • Cisco FEX Evaluation
  • 9 - Describing Basic Data Center Security
  • Threat Mitigation
  • Attack and Countermeasure Examples
  • Secure the Management Plane
  • Protect the Control Plane
  • RBAC and Authentication, Authorization, and Accounting (AAA)
  • 10 - Describing Advanced Data Center Security
  • Cisco TrustSec in Cisco Secure Enclaves Architecture
  • Cisco TrustSec Operation
  • Firewalling
  • Positioning the Firewall Within Data Center Networks
  • Cisco Firepower® Portfolio
  • Firewall Virtualization
  • Design for Threat Mitigation
  • 11 - Describing Management and Orchestration
  • Network and License Management
  • Cisco UCS Manager
  • Cisco UCS Director
  • Cisco Intersight
  • Cisco DCNM Overview
  • 12 - Describing Storage and RAID Options
  • Position DAS in Storage Technologies
  • Network-Attached Storage
  • Fibre Channel, FCoE, and Internet Small Computer System Interface (iSCSI)
  • Evaluate Storage Technologies
  • 13 - Describing Fibre Channel Concepts
  • Fibre Channel Connections, Layers, and Addresses
  • Fibre Channel Communication
  • Virtualization in Fibre Channel SAN
  • 14 - Describing Fibre Channel Topologies
  • SAN Parameterization
  • SAN Design Options
  • Choosing a Fibre Channel Design Solution
  • 15 - Describing FCoE
  • FCoE Protocol Characteristics
  • FCoE Communication
  • Data Center Bridging
  • FCoE Initialization Protocol
  • FCoE Design Options
  • 16 - Describing Storage Security
  • Common SAN Security Features
  • Zones
  • SAN Security Enhancements
  • Cryptography in SAN
  • 17 - Describing SAN Management and Orchestration
  • Cisco DCNM for SAN
  • Cisco DCNM Analytics and Streaming Telemetry
  • Cisco UCS Director in the SAN
  • Cisco UCS Director Workflows
  • 18 - Describing Cisco UCS Servers and Use Cases
  • Cisco UCS C-Series Servers
  • Fabric Interconnects and Blade Chassis
  • Cisco UCS B-Series Server Adapter Cards
  • Stateless Computing
  • Cisco UCS Mini
  • 19 - Describing Fabric Interconnect Connectivity
  • Use of Fabric Interconnect Interfaces
  • VLANs and VSANs in a Cisco UCS Domain
  • Southbound Connections
  • Northbound Connections
  • Disjoint Layer 2 Networks
  • Fabric Interconnect High Availability and Redundancy
  • 20 - Describing Hyperconverged and Integrated Systems
  • Hyperconverged and Integrated Systems Overview
  • Cisco HyperFlex™ Solution
  • Cisco HyperFlex Scalability and Robustness
  • Cisco HyperFlex Clusters
  • Cluster Capacity and Multiple Clusters on One Cisco UCS Domain
  • External Storage and Graphical Processing Units on Cisco HyperFlex
  • Cisco HyperFlex Positioning
  • 21 - Describing Cisco UCS Manager Systemwide Parameters
  • Cisco UCS Setup and Management
  • Cisco UCS Traffic Management
  • 22 - Describing Cisco UCS RBAC
  • Roles and Privileges
  • Organizations in Cisco UCS Manager
  • Locales and Effective Rights
  • Authentication, Authorization, and Accounting
  • Two-Factor Authentication
  • 23 - Describing Pools for Service Profiles
  • Global and Local Pools
  • Universally Unique Identifier (UUID) Suffix and Media Access Control (MAC) Address Pools
  • World Wide Name (WWN) Pools
  • Server and iSCSI Initiator IP Pools
  • 24 - Describing Policies for Service Profiles
  • Global vs. Local Policies
  • Storage and Basic Input/Output System (BIOS) Policies
  • Boot and Scrub Policies
  • Intelligent Platform Management Interface (IPMI) and Maintenance Policies
  • 25 - Describing Network-Specific Adapters and Policies
  • LAN Connectivity Controls
  • SAN Connectivity Controls
  • Virtual Access Layer
  • Connectivity Enhancements
  • 26 - Describing Templates in Cisco UCS Manager
  • Cisco UCS Templates
  • Service Profile Templates
  • Network Templates
  • 27 - Designing Data Center Automation
  • Model-Driven Programmability
  • Cisco NX-API Overview
  • Programmability Using Python
  • Cisco Ansible Module
  • Use the Puppet Agent
  • Actual course outline may vary depending on offering center. Contact your sales representative for more information.

    Who is it For?

    Target Audience

    IT professionals with five to eight years of experience in these roles:

    Data center engineers

    Network designers

    Network administrators

    Network engineers

    Systems engineers

    System administrator

    Consulting systems engineers

    Technical solutions architects

    Server administrators

    Network managers

    Cisco integrators or partners

    Prerequisites

    Other Prerequisites

    It is recommended, but not required, to have the following skills and knowledge before attending this course:

    Describe data center networking concepts

    Describe data center storage concepts

    Describe data center virtualization

    Describe Cisco UCS

    Describe data center automation and orchestration with a focus on Cisco ACI and Cisco UCS Director

    Identify products in the Cisco data center Nexus and Cisco MDS families

    Describe network fundamentals and build simple LANs, including switching and routing

    Before taking this course, you should be able to: Implement data center networking [Local Area Network (LAN) and Storage Area Network (SAN)] Describe data center storage Implement data center virtualization Implement Cisco Unified Computing System (Cisco UCS) Implement data center automation and orchestration with the focus on Cisco Application Centric Infrastructure (ACI) and Cisco UCS Director Describe products in the Cisco Data Center Nexus and Multilayer Director Switch (MDS) families.

    Cisco® Designing Cisco® Data Center Infrastructure v7.0 (DCID)

    Call
    Course Length : 5 Days (40 Hours)

    There are currently no scheduled dates for this course. Please contact us for more information.

     Interested in On-Demand Training?

    Need Help Picking the Right Course? Give us a call! 800-201-0555