This course shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory—you will get started with building and learning about recommenders as quickly as possible. In this course, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You will also use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques.
* Actual course outline may vary depending on offering center. Contact your sales representative for more information.
Learning Objectives
Working in a hands-on lab environment led by our expert instructor, attendees will
Understand the different kinds of recommender systems
Master data-wrangling techniques using the pandas library
Building an IMDB Top 250 Clone
Build a content-based engine to recommend movies based on real movie metadata
Employ data-mining techniques used in building recommenders
Build industry-standard collaborative filters using powerful algorithms
Building Hybrid Recommenders that incorporate content based and collaborative filtering
$2,195
Length: 3.0 days (24 hours)
Level:
Course Schedule:
6:00 PM ET