Learn how to use the machine learning (ML) pipeline with Amazon SageMaker with hands-on exercises and four days of instruction. You will learn how to frame your business problems as ML problems and use Amazon SageMaker to train, evaluate, tune, and deploy ML models. Hands-on learning is a key component of this course, so you’ll choose a project to work on, and then apply the knowledge and skills you learn to your chosen project in each phase of the pipeline. You’ll have a choice of projects: fraud detection, recommendation engines, or flight delays.
* Actual course outline may vary depending on offering center. Contact your sales representative for more information.
Learning Objectives
By the end of this course, you will be able to:
Select and justify the appropriate ML approach for a given business problem
Use the ML pipeline to solve a specific business problem
Train, evaluate, deploy, and tune an ML model in Amazon SageMaker
Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
Apply machine learning to a real-life business problem after the course is complete
$2,700
Length: 4.0 days (32 hours)
Level: