Introduction to R Programming

$1,295.00 USD

2 Days


Delivery Methods
Virtual Instructor Led
Private Group

Course Overview

Over the past few years, R has been steadily gaining popularity with business analysts, statisticians and data scientists as a tool of choice for conducting statistical analysis of data as well as supervised and unsupervised machine learning.

Course Objectives

This intensive training course helps students learn the practical aspects of the R programming language. The course is supplemented by many hands-on labs which allow attendees to immediately apply their theoretical knowledge in practice.

Who Should Attend?

Business Analysts, Technical Managers, and Programmers
  • Top-rated instructors: Our crew of subject matter experts have an average instructor rating of 4.8 out of 5 across thousands of reviews.
  • Authorized content: We maintain more than 35 Authorized Training Partnerships with the top players in tech, ensuring your course materials contain the most relevant and up-to date information.
  • Interactive classroom participation: Our virtual training includes live lectures, demonstrations and virtual labs that allow you to participate in discussions with your instructor and fellow classmates to get real-time feedback.
  • Post Class Resources: Review your class content, catch up on any material you may have missed or perfect your new skills with access to resources after your course is complete.
  • Private Group Training: Let our world-class instructors deliver exclusive training courses just for your employees. Our private group training is designed to promote your team’s shared growth and skill development.
  • Tailored Training Solutions: Our subject matter experts can customize the class to specifically address the unique goals of your team.

Learning Credits: Learning Credits can be purchased well in advance of your training date to avoid having to commit to specific courses or dates. Learning Credits allow you to secure your training budget for an entire year while eliminating the administrative headache of paying for individual classes. They can also be redeemed for a full year from the date of purchase. If you have previously purchased a Learning Credit agreement with New Horizons, you may use a portion of your agreement to pay for this class.

If you have questions about Learning Credits, please contact your Account Manager.

Corporate Tech Pass: Our Corporate Tech Pass includes unlimited attendance for a single person, in the following Virtual Instructor Led course types: Microsoft Office, Microsoft Technical, CompTIA, Project Management, SharePoint, ITIL, Certified Ethical Hacker, Certified Hacking Forensics Investigator, Java, Professional Development Courses and more. The full list of eligible course titles can be found at

If you have questions about our Corporate Tech Pass, please contact your Account Manager.

Course Prerequisites

There are no prerequisites for this course.



  • What is R?
  • Positioning of R in the Data Science Space
  • The Legal Aspects
  • Microsoft R Open
  • R Integrated Development Environments
  • Running R
  • Running RStudio
  • Getting Help
  • General Notes on R Commands and Statements
  • Assignment Operators
  • R Core Data Structures
  • Assignment Example
  • R Objects and Workspace
  • Printing Objects
  • Arithmetic Operators
  • Logical Operators
  • System Date and Time
  • Operations
  • User-defined Functions
  • Control Statements
  • Conditional Execution
  • Repetitive Execution
  • Repetitive execution
  • Built-in Functions
  • Summary


  • What is Functional Programming (FP)?
  • Terminology: Higher-Order Functions
  • A Short List of Languages that Support FP
  • Functional Programming in R
  • Vector and Matrix Arithmetic
  • Vector Arithmetic Example
  • More Examples of FP in R
  • Summary


  • Getting and Setting the Working Directory
  • Getting the List of Files in a Directory
  • The R Home Directory
  • Executing External R commands
  • Loading External Scripts in RStudio
  • Listing Objects in Workspace
  • Removing Objects in Workspace
  • Saving Your Workspace in R
  • Saving Your Workspace in RStudio
  • Saving Your Workspace in R GUI
  • Loading Your Workspace
  • Diverting Output to a File
  • Batch (Unattended) Processing
  • Controlling Global Options
  • Summary


  • The R Data Types
  • System Date and Time
  • Formatting Date and Time
  • Using the mode() Function
  • R Data Structures
  • What is the Type of My Data Structure?
  • Creating Vectors
  • Logical Vectors
  • Character Vectors
  • Factorization
  • Multi-Mode Vectors
  • The Length of the Vector
  • Getting Vector Elements
  • Lists
  • A List with Element Names
  • Extracting List Elements
  • Adding to a List
  • Matrix Data Structure
  • Creating Matrices
  • Creating Matrices with cbind() and rbind()
  • Working with Data Frames
  • Matrices vs Data Frames
  • A Data Frame Sample
  • Creating a Data Frame
  • Accessing Data Cells
  • Getting Info About a Data Frame
  • Selecting Columns in Data Frames
  • Selecting Rows in Data Frames
  • Getting a Subset of a Data Frame
  • Sorting (ordering) Data in Data Frames by Attribute(s)
  • Editing Data Frames
  • The str() Function
  • Type Conversion (Coercion)
  • The summary() Function
  • Checking an Object's Type
  • Summary


  • The Base R Packages
  • Loading Packages
  • What is the Difference between Package and Library?
  • Extending R
  • The CRAN Web Site
  • Extending R in R GUI
  • Extending R in RStudio
  • Installing and Removing Packages from Command-Line
  • Summary


  • Reading Data from a File into a Vector
  • Example of Reading Data from a File into A Vector
  • Writing Data to a File
  • Example of Writing Data to a File
  • Reading Data into A Data Frame
  • Writing CSV Files
  • Importing Data into R
  • Exporting Data from R
  • Summary


  • Statistical Computing Features
  • Descriptive Statistics
  • Basic Statistical Functions
  • Examples of Using Basic Statistical Functions
  • Non-uniformity of a Probability Distribution
  • Writing Your Own skew and kurtosis Functions
  • Generating Normally Distributed Random Numbers
  • Generating Uniformly Distributed Random Numbers
  • Using the summary() Function
  • Math Functions Used in Data Analysis
  • Examples of Using Math Functions
  • Correlations
  • Correlation Example
  • Testing Correlation Coefficient for Significance
  • The cor.test() Function
  • The cor.test() Example
  • Regression Analysis
  • Types of Regression
  • Simple Linear Regression Model
  • Least-Squares Method (LSM)
  • LSM Assumptions
  • Fitting Linear Regression Models in R
  • Example of Using lm()
  • Confidence Intervals for Model Parameters
  • Example of Using lm() with a Data Frame
  • Regression Models in Excel
  • Multiple Regression Analysis
  • Summary


  • Applying Functions to Matrices and Data Frames
  • The apply() Function
  • Using apply()
  • Using apply() with a User-Defined Function
  • apply() Variants
  • Using tapply()
  • Adding a Column to a Data Frame
  • Dropping A Column in a Data Frame
  • The attach() and detach() Functions
  • Sampling
  • Using sample() for Generating Labels
  • Set Operations
  • Example of Using Set Operations
  • The dplyr Package
  • Object Masking (Shadowing) Considerations
  • Getting More Information on dplyr in RStudio
  • The search() or searchpaths() Functions
  • Handling Large Data Sets in R with the data.table Package
  • The fread() and fwrite() functions from the data.table Package
  • Using the Data Table Structure
  • Summary


  • Data Visualization
  • Data Visualization in R
  • The ggplot2 Data Visualization Package
  • Creating Bar Plots in R
  • Creating Horizontal Bar Plots
  • Using barplot() with Matrices
  • Using barplot() with Matrices Example
  • Customizing Plots
  • Histograms in R
  • Building Histograms with hist()
  • Example of using hist()
  • Pie Charts in R
  • Examples of using pie()
  • Generic X-Y Plotting
  • Examples of the plot() function
  • Dot Plots in R
  • Saving Your Work
  • Supported Export Options
  • Plots in RStudio
  • Saving a Plot as an Image
  • Summary


  • Object Memory Allocation Considerations
  • Garbage Collection
  • Finding Out About Loaded Packages
  • Using the conflicts() Function
  • Getting Information About the Object Source Package with the pryr Package
  • Using the where() Function from the pryr Package
  • Timing Your Code
  • Timing Your Code with system.time()
  • Timing Your Code with System.time()
  • Sleeping a Program
  • Handling Large Data Sets in R with the data.table Package
  • Passing System-Level Parameters to R
  • Summary


  • Lab 1 - Getting Started with R
  • Lab 2 - Learning the R Type System and Structures
  • Lab 3 - Read and Write Operations in R
  • Lab 4 - Data Import and Export in R
  • Lab 5 - k-Nearest Neighbors Algorithm
  • Lab 6 - Creating Your Own Statistical Functions
  • Lab 7 - Simple Linear Regression
  • Lab 8 - Monte-Carlo Simulation (Method)
  • Lab 9 - Data Processing with R
  • Lab 10 - Using R Graphics Package
  • Lab 11 - Using R Efficiently

Get in touch to schedule training for your team
We can enroll multiple students in an upcoming class or schedule a dedicated private training event designed to meet your organization’s needs.


Do You Have Additional Questions? Please Contact Us Below.

contact us contact us 
Contact Us about Starting Your Business Training Strategy with New Horizons